Overview of Water Quality Monitoring In Montgomery County May 10, 2021 Water Quality Advisory Group #### Overview - Monitoring Overview - Biological Monitoring - Habitat Monitoring/Geomorphology Monitoring - USGS Monitoring - NPDES/MS4 Monitoring - Breewood - New Monitoring Requirements - Special Protection Area Monitoring - Stream Restoration Verification - Questions # Why We Monitor... - ► DEP Programs - ► MS4/NPDES Program - **▶** Baseline Conditions - ► Special Protection Areas - ► Stream Restoration - ► Special Projects - ► Water Quality Incidents #### Benthic Macroinvertebrates Monitoring # Fish Sampling Sensitive Toleran | STREAM | SMENT FIELD DATA S | BUCK POATE VE | RIFFLERU | N PREVALENT STR | | |----------------------------|--|--|--|--|--| | SITE | TB5-0 | | | - 1/M/R | | | 77.5 | | - INVESTIGAT | - | | | | | Streams are those in mode
latural streams have substra-
sculate aggregations along s | erate to high gradient lands
sizes primarily composed of
stream reaches. | course sediment particles | (i.e., gravel or larger) | | | Habitet | Category | | | | | | Perameter | Optimal | Suboptimal | Marginel | Poer | | | 1. Instrum Cover
(Fish) | Greater than 50% mix
of sings, submerged
logs, underget beniss, or
other stable habitat. | populations. | avelebility less than
desirable | Less than 10% m
stable habitet lace
habitet is obvious | | | SCORE JL | 20 19 18 17 16 | 15 14 13 12 /11/ | 10 (5/4 7 4 | 5 4 3 2 | | | 2. Epifeunsi
Subetrate | Wal-developed riffs
and trace riffs it as wide
as stream and length
attacks two deves the
width of stream;
shandarus of cobbie. | Poffic is as wide as stream
but length is less than
two direct width,
shandance of cobble;
benders and gravel
someone. | fun area may be lacking:
riffin not so wide as
stream and its largels in
less than 2 times the
stream width; gravel or
large boulders and
beforck present, some
middle areases. | Ratios or non-virta-
non-southers; large
boulders and bades
premient; cobble la | | | SCORE | 20 19 18 17 16 | 45 14 13 12 11 | 30 9 8 7 6 | 5 4 3 2 1 | | | 3. Embeddedness | Gravel, cobbie, and
boulder particles are 0-
25% surrounded by fine
sed-ment. | Gravel, cobbie, and
housder particles are 25-
50% servounded by line
sediment. | Gravel, cobbin, and
boulder particles are 50-
72% surrounded by fine
self-rers. | Gravel, cobble, and
boulder purceles ar
more than 75%
surrounded by fee
melitrant. | | | SCORE | | 15 H IJ 12/11 | 10 9 8 7 4 | 5 4 3 2 1 | | | 4. Chennal
Alteration | Characteristics or designing absent or meetral, sensor with neuronal, sinuous pattern. | Some channelization present, smally in small or faridge shutments; endezoes of past channelization, i.e., diredge, (greater than past 20 yr) may be present, but recent channelization is not present. | New embasisments
present on both basing
and 40 to 80% of stream
reach channel-tred and
dampsed. | Banks shored with
paleon or commerc of
80% of the streams
other reliand
disrupted. | | | SCORE | 20 19 10 17 16 | 15 14 13 12 11 | 10 9 8 7 6 | 5 4 3 2 1 | | | 5. Sediment
Deposition | of islands or point hers
and less than SX of the
bettern affected by
sediment deposition. | Some new increase in har formation, mostly from course gravel. 5-30% of the bustons affected; alight deposition in pools. | Professes deposition of
new grand, coarse sand
on old and new barr; 30-
50% of the bottom
affected; sodemans
deposits at obstruction,
constriction, and bends;
moderate deposition of
seeks providers. | Heavy deposits of in
material, increased in
development, more
50% of the bostom
changing frequently,
pools almost absen-
to substantial and/ore
deposition. | | | cope 7 | 20 19 18 17 14 | | 10 7 8 7 4 | 5 4 3 2 1 | | # Geomorphology #### • Fluvial geomorphology: • The study of the form and function of **streams** and the interaction between **streams** and the landscape around them. #### Stream Conditions over Times #### Round 2 Stream Conditions # Round 3 Update # Round 4 Update #### **USGS Monitoring** Flow and select chemistry monitoring across the County #### **USGS Monitoring** Flow and select chemistry monitoring across the County Annual stream discharge is continuing increase across the Northern portion of the County - ✓ 42% impervious - ✓ County Property: Green Streets - ✓ Private Property: - County Construction - ✓ Voluntary - ✓ Stream Restoration - ✓ 36% 69% Treatment #### Watershed Restoration - ✓ Completed 2018 - ✓ Extensive use - ✓ Rainscapes - ✓ BMPs - ✓ Greenstreets - ✓ Stream Restoration #### **Stream Restoration** - Regenerative Stormwater Conveyance - ✓ 1,200 Linear Feet Before and After #### Water Quality Monitoring - ✓ (2) Automated Flow and Chemistry Stations - ✓ Enteroccus - ✓ Biochemical Oxygen Demand - ✓ Hardness - ✓ Nitrate+Nitrite, Total Kjeldahl Nitrogen - ✓ Total Petroleum Hydrocarbons - ✓ Total Phosphorus - ✓ Total Suspended Solids - ✓ Total Cadmium - ✓ Total Copper, Lead, Zinc # Breewood Case Study: Reduced Stormflow # Breewood Case Study: Biological Health Water Chemistry EMCs (Small Storms; ≥ 0.3", ≤ 0.75" Water Chemistry EMCs (Small Storms; ≥ 0.3", ≤ 0.75" Water Chemistry EMCs (Large Storm Water Chemistry EMCs (Large Storms; 0.77" to 3.35") # Special Protection Areas (SPAs) Development and watersheds Clarksburg 2002 Development and watersheds Clarksburg 2007 #### Clarksburg Stream Conditions Trend #### Stream Restoration Verification - Geomorphology - Long Pro - Cross Sections - Reforestation - Wetlands - Photos #### Stream Restoration Verification ### New MS4 Requirements - "Montgomery County shall conduct BMP effectiveness and watershed assessment monitoring, and polychlorinated biphenyls (PCB) source tracking for assessing progress toward improving local water quality and restoring the Chesapeake Bay." - BMP Effectiveness Watershed monitoring (Breewood) - Chemical (Storm flow, base flow, and continuous) - Biological - Geomorphology - Watershed Assessment (Countywide) - Biological Monitoring - Chloride Monitoring (Conductivity) - Bacteria Monitoring # Thank you! Questions? www.montgomerycountymd.gov/DEP